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LEVER TO THE EDITOR 

Suppression of dissipation by localization 

Michael Wilkinson and Elizabeth J Austin 
Department of Physics and Applied Physics, John Anderson Building, University of 
Strathclyde, Glasgow G4 ONG, UK 
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Abstract. When expressed in an adiabatic basis, the evolution operator of a generic system 
with a time-dependent Hamiltonian is represented by a banded matrix, and the eigenstates 
of the evolution operator are localized. If the Hamiltonian is periodic in time, this result 
implies that the system can only absorb energy for a limited number of cycles. One 
consequence of this result is that, ideally, the absorption of low-frequency electromagnetic 
radiation by small, irregularly shaped, conducting particles can exhibit a non-classical 
saturation. The conditions under which this effect might be observable are discussed. 

In this letter we consider the evolution operator fi( t )  for a system with a Hamiltonian 
which is periodic in time, and relate the results to a model for dissipation in microscopic 
quantum systems. We consider systems where the Hamiltonian is either random, or 
where the statistics of the spectrum can be modelled by random matrix theory and in 
which the variation of the Hamiltonian is slow compared to any relevant classical 
timescale. Given these conditions our results have a universal validity. We consider 
the application of our results to a system of ‘independent electrons’ moving inside an 
irregularly shaped enclosure, being subjected to a uniform electric field which varies 
periodically in time, with a frequency which is small compared to that of collisions 
with the walls. This is a realistic model for the absorption of low-frequency monochro- 
matic electromagnetic radiation by small conducting particles. We will show that the 
eigenstates of the evolution operator are localized, and that this leads to a potentially 
observable suppression of the absorption of radiation by the particles. The results are 
related to other recent work involving the suppression of energy transfer due to 
localization of the eigenvectors of unitary operators, including studies on the quantized 
standard map (Grempel et al 1982) and a model for the response of microscopic rings 
to a time dependent flux (Gefen and Thouless 1987). Our results have a very wide 
range of potential applications because they refer to generic systems. 

The system is defined by a single electron Hamiltonian H which depends on a 
parameter X (  t ) ,  which oscillates sinusoidally with frequency w and amplitude X o :  
X (  t )  = X o  cos(wt). The response of the system to the slow perturbation is characterized 
by the following parameters: X , ,  w,  h, the density of states at the Fermi energy pF, 
and the typical size wF of the off-diagonal matrix elements (n la f i /dXlm)  for states 
near the Fermi energy (here In), Im) are instantaneous eigenstates of fi, and we define 
W E  to be the variance of the matrix elements with E,, = E,,, = EF). From these five 
parameters we can form two independent dimensionless groups, x = P E ~ W ~ X , , U  and 
x = ~FwFXO : x characterizes the adiabaticity of the motion (the quantum adiabatic 
theorem (Bohm 1951) applies if x << 11, and ,y characterizes whether it is perturbative 
(energy levels are not mixed if ,y<< 1). 
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We consider the evolution operator C ( t )  in an adiabatic basis, Le. in the basis 
formed by theAeigenstates l n ( t ) )  of the instantaneous Hamiltonian H ( X ( t ) ) .  I f  the 
variation of H is sufficiently slow, the adiabatic theorem shows that the matrix 
representing fi( t )  is diagonal. For faster variations of the Hamiltonian the matrix is 
not diagonal but banded in the sense that the matrix elements decay rapidly away 
from the diagonal. The evolution operator can be characterized by a function P(n), 
which represents the probability of making a transition from the ith state to the ( i  + n)th 
state: 

P ( n )  = ( I  Ui,i+n12) (1)  
where ( )  denotes an average over states i near the Fermi energy. The form of the 
function P (  n) depends on the dimensionless parameters x and x, and several regimes 
can be distinguished, which will be discussed fully in a later publication. Here we 
examine only two of these regimes: we consider the limiting cases x+O and X - + C O ,  

with x >> 1 held fixed. In the limit x -$ 0, the evolution operator can be calculated using 
perturbation theory, and it is easy to show that, after N >> 1 cycles, 

P ( n )  = ( 1  - 2 p ) 6 ( n ) + p 6 ( ~ 1  -pFhw) +@(n +pFhw) ( 2 )  
where p = r2Nx3 /x .  This result remains valid provided N is small enough that p << 1. 
In the limit X + O O  on the other hand, it is possible to show that P ( n )  is essentially 
Gaussian, with a variance 

A F =  2?T2xX. ( 3 )  
When x >> 1, P (  n )  deviates from a Gaussian in two ways. Firstly, the diagonal elements 
have twice the variance of the nearby off-diagonal elements if the system has time 
reversal invariance (Altshuler and Aronov 1981). Secondly, the decay is not as rapid 
as a Gaussian for very large Inl, but it can be shown that it is at least as rapid as lq4, 
which is sufficient to guarantee the localization properties which are required. 

It is well known that the eigenvectors of a banded Hermitian matrix with random 
elements are localized (see, e.g. Yeung and Oono (1987) and references therein) and 
the arguments leading to this result are equally valid for banded, random, unitary 
operators. Later we will present a model in which the evolution operator has been 
calculated and shown to have the properties described above, and where the eigenvec- 
tors of the evolution operator have localization properties similar to those of random 
unitary matrices with the same distribution P (  n ) .  

This localization of the eigenstates of the evolution operator has important implica- 
tions for the ability of the periodically perturbed system to exchange energy with the 
driving system. We illustrate this point by considering our model for the absorption 
of radiation by small conducting particles. Assume that the system starts in its ground 
state, with all of the energy levels up to NF filled. After a time t, the total energy of 
the system of electrons is 

N F  

ET= C C Iqi12Ej (4) 
i = l  j 

where the Ej are the energies of the single electron states and the U, are matrix elements 
of the evolution operator. The energy absorbed by the system is related to the distribu- 
tion P ( n ) :  an elementary calculation shows that the energy absorbed is 

m 

AET = W 2 P F  AF = {-- dn n2P(  n )  ( 5 )  
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where A F  is the second moment of the distribution P ( n ) .  We can compare this with 
the conventional way of calculating the energy dissipated using the Kubo-Greenwood 
formula (Kubo 1956, Greenwood 1957), which can be expressed in the form (Wilkinson 
1988, 1990) 

It is easy to verify that the estimate for PET obtained by integrating this formula is 
the same as that obtained from ( 5 ) ,  using the properties of the distribution function 
P (  n )  described above. 

For a periodically driven system the amount of energy absorbed after the Nth cycle 
will be determined by the value of A F  for the Nth power of the Floquet operator (the 
evolution operator for one cycle). If the eigenstates of the Floquet operator are localized, 
with a localization length A, the value of AF cannot exceed a maximum value A,,, = 
O(A2) and after initially increasing linearly at a rate given by the Kubo-Greenwood 
formula the energy absorbed will saturate. When ,y >> 1, numerical experiments and 
theoretical arguments show that A = O(A), implying that the energy absorption will 
saturate after O ( N * )  cycles, where N* = O(A) = O(xx). When x << 1, the localization 
length cannot be greater than O(pFRo) = O ( x / x ) ,  so that N* =O(x / , y3 ) .  Note that 
these results imply that the saturation effect is most pronounced (i.e. N* is small) 
when x is neither very large nor very small. 

These conclusions are surprising because they imply that a reasonable model for 
small metallic particles exhibits a non-classical saturation of the absorption of low- 
frequency monochromatic radiation: we must consider carefully the conditions required 
to observe this effect. The result depends on the Hamiltonian being a periodic function 
of time, and we argue that the effect appears to be extremely sensitive to deviations 
of the Hamiltonian from exact periodicity. In the case of the application to the 
absorption of radiation, the deviations from periodicity can be caused by the random 
perturbation of the small particles by phonons in the supporting material. If \U;) is 
the ith eigenvector of the evolution operator at the Nth cycle of the motion, the 
condition for the suppression of dissipation is clearly that the matrix of overlaps of 
eigenvectors for successive cycles be close to the identity: 

(U y = S, + O( 1 / m )  (7) 
where N *  is the number of cycles after which saturation is expected to occur. In order 
to satisfy this criterion the non-periodic perturbation of the Hamiltonian must satisfy 
two conditions. If the Hapiltonian were time independent, the eigenstates of 3 would 
be the same as those of H, and the condition (7) would be the condition for states not 
to be mixed by the perturbation, i.e. the shift SE in the energy levels due to the 
non-periodic perturbation should satisfy 

pFSE << l / d N * .  (8) 
Also, in order to maintain the same phase relationships in the evolution operator, SE 
should satisfy 

where T = 2r/o is a period of the perturbation. The conditions (8) and (9) represent 
a severe limitation on the size of the non-periodic perturbation SE. 
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Now we discuss the numerical results which support the claim that the energy 
absorption saturates. We used a time-dependent extension of the well known Gaussian 
orthogonal ensemble (GOE) random matrix model (Porter 1965): this model is appropri- 
ate for describing a disordered system in a small range of energies about the Fermi 
level, in situations where (spatial) localization does not play a rale (Gorkov and 
Eliashberg 1965, Altshuler and Shklovskii 1986). The GOE model is a symmetric N x N 
random matrix, with independently Gaussian distributed elements, which have mean 
value zero and variance (T*( 1 + ay). The Fermi energy was placed at the centre of the 
spectrum, where the density of states is p = m/a.rr. The matrix elements (n laH/aXlm)  
(where the perturbation parameter X represents the electric field in our example) can 
also be modelled by a GOE matrix, provided o-' is larger than the classical characteristic 
timescale associated with the electron motion (for a discussion of this point see Gorkov 
and Eliashberg (1965)). Time dependence was therefore introduced by taking the 
Hamiltonian to be a linear combination of two GOE matrices, AI and A2: 

A = cos x A, + sin x A2 X( t )  = x, cos(ot). (10) 
This model is a GOE with the same statistical properties for all X. We evaluated the 
evolution operator for this model by integrating the Schrodinger equation using the 
fourth-order Runge-Kutta method, and transforming the result to an adiabatic basis. 
The results discussed below are for the following parameter values: U = h = 1, N = 100, 
X , =  .rr/m, o = 2X0, so that the dimensionless parameters are x = 1, x = 2 (this 
required about 25 minutes on a Cray computer for each realization). 

Figure 1 is a plot of the distribution function P( n), plotted on a logarithmic scale. 
Despite the fact that x = 1 is not large, the results are already in good agreement with 
the theoretical predictions for the x + m  limit: the curve is a good fit to a Gaussian, 
with variance A, = 41.6, close to the prediction given by (3) .  The non-Gaussian tail of 
the distribution vanishes more rapidly than I n/-4. Figure 2 (curve A) shows the saturation 
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Figure 1. Logarithmic plot of the distribution function P( n)  for the evolution operator of 
the GOE model, showing a fit to a quadratic. The non-Gaussian tail vanishes faster than 
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Figure 2. Curve A: energy absorbed as  a function of time for the random matrix model 
(9); the energy initially increases at a rate given by the Kubo formula (straight line), but 
soon starts to saturate. Curve B is a simulation using a random unitary matrix, and curve 
C illustrates the effect of introducing noise. 

of the energy absorption calculated using (4): initially the energy increases linearly, 
at a rate predicted by the Kubo formula (straight line on figure 2). Curve B is the 
result obtained using a random, Gaussian-banded unitary matrix with the same value 
of A, as the evolution operator: our numerical results are consistent with the localization 
properties of the evolution operator being statistically equivalent to those of these 
random matrices. Curve C is an illustration of the sensitivity of the localization effect 
to noise: we evaluated a second evolution operator, for the same realization of the 
GOE, but with the frequency w increased by WO, and evolved the wavefunction by 
multiplying a random sequence of the two operators (each occurring with probability 
1). The localization effect is suppressed in this case, and the energy absorbed does not 
saturate until all the states are filled with equal probability. 

We also investigated the localization length A (which we defined as the square root 
of the second moment of the probability distribution of an eigenstate) systematically 
in the regime where P( n) is approximately Gaussian, using Gaussian-banded random 
unitary matrices to simulate evolution operators when calculation of the latter would 
have been prohibitively slow. We found that A is proportional to A F ,  and that the 
multiplier is approximately unity. 

Having discussed the saturation effect in general terms we now describe some 
estimates which are required for applying the predictions to the absorption of radiation 
by small conducting particles, where the electric field 8 ( t )  of the applied radiation 
plays the rBle of the time-dependent parameter X ( t ) .  Estimating uF, the typical size 
of the dipole matrix element, is not entirely straightforward because the applied electric 
field is screened by the electrons (this point was not treated properly by Gorkov and 
Eliashberg: see Strassler et a1 1972). The easiest method is to use the fact that, when 
x >> 1, the initial rate of dissipation is given correctly by the Kubo-Greenwood theory 
( 6 ) ,  and to equate this to a classical estimate for the rate of dissipation. Applying an 
external electric field 8 causes a charge q to appear on the surface of the particle 
which screens out the applied field: q a ‘&O~,uZ, where a is the typical dimension of 
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the particles. This transfer of charge implies that a current I --- qw flows through the 
particle, with a consequent dissipation of energy at a rate RI2, where R is the effective 
resistance of the particle. We can use the Drude model to estimate the resistance, 
replacing the bulk relaxation time by a /  vF if the particle is smaller than the bulk mean 
free path, where uF is the Fermi velocity. This leads to a semiclassical estimate for the 
rate of dissipation which is equated to (6) to give an estimate for wF. Absorption by 
eddy currents induced by the magnetic field of the radiation may be the dominant 
effect in very small systems (see Carr et al (1985) for a review of optical properties of 
small metal particles); these can be treated in a similar way to the electric field effect 
considered above. 

We estimate the size of the perturbation due to phonons using the following simple 
model. We regard the small metallic particles as conducting regions of typical size a 
embedded in a non-conducting continuum, with bulk modulus K,  speed of sound c 
and temperature T. The perturbation SE due to the phonons is given by SE = Sa ( EF/  a )  
where Sa is the RMS change in the dimension of the particle due to phonons. The RMS 

displacement of a point due to a phonon with wavevector k is Sxi = O(k,T/KVk2) ,  
where V is the volume of the sample, provided the energy of the phonon is small 
enough for it to be excited thermally, i.e. k < k,,, = k ,  T /  hc. The relative displacement 
of the two sides of a particle of size a due to this phonon is Sak-Sxk,  if ka >>1, 
otherwise 6ak = ka6xk if ka << 1. Combining these Sak incoherently for all phonons 
with k < k,,, , assuming that most of these phonons have ka >> 1, gives the estimate 

sa = __ (hC/K)"*.  ( PCT) 
We mentioned earlier that the saturation effect will be most readily observable in 

systems in which ,y is of order unity and x is not too large. These conditions are 
difficult to satisfy for three-dimensional particles at frequencies large enough for the 
absorption of radiation to be experimentally observable. If the small conducting 
particles are prepared by etching a surface holding a two-dimensional electron gas, it 
appears to be possible to reach the required experimental conditions. Assuming a 
Fermi energy of lOmeV, an effective mass m* =0.1 me, relative permittivity E,=  10, 
and that the electron motion is ballistic for the particle sizes we consider, we estimate 
pF/a2 = 1.5 x J-' m-2, and a& = 4 x C2 m3 (we are ignoring spin and other 
degeneracies). For particles of size a --- m, we have x = 1, x = 2 (the parameters 
of the numerical simulation above) at a frequency of around 20GHz, and field of 
lo4 V m-'. We conclude that the parameter regimes where the saturation effect is most 
readily observed are attainable in two-dimensional systems. We estimated the RMS 

strain on these particles due to phonons, using the model described above, assuming 
c = 104m s-', K = 10" N m-*, and T = 10 K: we find S E / E  = lo-', which implies that 
the inequalities (8) and (9) are easily satisfied, so that the effect need not be destroyed 
by phonons. 

In conclusion, we have shown that localization of the eigenstates of the evolution 
operator leads to a suppression of absorption of energy from a periodic disturbance 
in generic quantum systems. The effect is very sensitive to noise. Simple estimates 
suggest that the effect could be observable in absorption of microwave radiation by 
two-dimensional particles. 

This work was supported by the UK Science and Engineering Research Council, grant 
no GRIF 49378. 
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